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ABSTRACT

Motivation: Affymetrix GeneChip arrays require summarization in
order to combine the probe-level intensities into one value represent-
ing the expression level of a gene. However, probe intensity measure-
ments are expected to be affected by different levels of non-specific- and
cross-hybridization to non-specific transcripts. Here, we present a new
summarization technique, the Distribution Free Weighted method
(DFW), which uses information about the variability in probe behavior
to estimate the extent of non-specific and cross-hybridization for each
probe. The contribution of the probe is weighted accordingly during
summarization, without making any distributional assumptions for the
probe-level data.

Results: We compare DFW with several popular summarization
methods on spike-in datasets, via both our own calculations and the
‘Affycomp II’ competition. The results show that DFW outperforms
other methods when sensitivity and specificity are considered simulta-
neously. With the Affycomp spike-in datasets, the area under the
receiver operating characteristic curve for DFW is nearly 1.0 (a perfect
value), indicating that DFW can identify all differentially expressed
genes with a few false positives. The approach used is also computa-
tionally faster than most other methods in current use.

Availability: The R code for DFW is available upon request.
Contact: mmcgee @smu.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Using microarrays of polynucleotide probes, researchers can mea-
sure the expression levels for tens of thousands genes simultane-
ously. This provides an opportunity for scientists to investigate the
functional relationship between the cellular and physiological pro-
cesses of biological organisms and their genes at a genome-wide
systems level. Of the several types of gene expression microarrays,
the Affymetrix GeneChip® is the most widely used.

An Affymetrix GeneChip® can contain from 6000 to >50 000
probe sets that target specific genes, depending on the organism and
platform. Usually the number of probe pairs within a probe set is
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between 11 and 20. For each probe pair, there are two probes. The
perfect match (PM) probe is 25 nt in length, and is perfectly com-
plementary to a subsequence of the target mRNA. The mismatch
(MM) probe is identical to the corresponding PM probe except that
the middle (13th) base is intentionally changed to its Watson—Crick
complement. MM probes were originally designed to estimate the
background signal of the corresponding PM probes.

The raw microarray intensity data are usually highly ‘noisy’.
Consequently, before any high level analysis, such as gene selec-
tion, classification, or clustering, is executed, a series of preprocess-
ing procedures are usually performed. These preprocessing steps
can profoundly affect the results of high-level analyses. A typical
preprocessing procedure consists of three steps as follows: back-
ground correction, normalization and summarization, not necessar-
ily in this order. The background correction step is typically done in
an attempt to remove the part of the raw intensity value that is due to
non-specific binding of the labeled target mixture; the normalization
step reduces systematic variation in intensity value distributions
between chips and the summarization step generates a single exp-
ression value for each gene from the probe-level intensity values.

In this paper, we focus on the summarization step. There are
several summarization methods in common use. The earliest one,
Affymetrix Microarray Suite (MAS 4.0), takes the average of the
background corrected intensities of PMs within a probe set after
removing the smallest and largest values (AvDiff). MAS 5.0 (Affy-
metrix, 2002) uses 1-step Tukey Biweight method to get a gene
expression summary. Model Based Expression Index (MBEI, Li and
Wong 2001a, b) uses a model to estimate the signal based on the
original scale. Robust Multi-chip Average (RMA, Bolstad et al.,
2003; Irizarry et al., 2003a, b) obtains gene expression values using
the non-parametric and robust median polish approach on the
logarithm-transformed probe intensities. However, the RMA back-
ground correction method makes the assumption that the probe
intensities follow an exponential-normal convolution model. A
recently developed summarization procedure, Factor Analysis for
Robust Microarray Summarization (FARMS, Hochreiter et al.,
2006), is also a model-based method that uses logarithm-
transformed data.

Model-based methods are heavily dependent on model assump-
tions, and require estimation of model parameters in order to
perform effectively. In practice, some of the assumptions that are
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based on distributional characteristics may not be appropriate for
microarray data. Furthermore, parameter estimation is not an easy
task for microarray data. Maximum likelihood procedures are
typically unstable, and EM-based algorithms too slow, due to the
large amount of data generated by a typical microarray experiment
(Bolstad, 2004; McGee and Chen, 2006).

In addition, few of these models have taken into account non-
specific- and cross-hybridization, which can vary among probes
within a given probe set. Several observations indicate that non-
specific- and cross-hybridization are significant contributors to
probe-level intensity values. First, the PM and MM values of a
probe set are highly correlated with each other, presumably due
to some level of non-specific hybridization of the MM probe to the
specific target transcript (M. McGee and Z. Chen, unpublished
data). Second, for a substantial fraction of the probe sets (~30%
in many datasets), the MM intensity is actually greater than the PM
intensity (Irizarry et al., 2003b), presumably due to MM cross-
hybridization to a different target transcript. Estimating the effects
of non-specific- and cross-hybridization is complicated by the fact
that the hybridization capabilities for PM probes within a probe set
are not the same due to differences in probe content and structure.
The difference in probe-level hybridization to the same target tran-
script has been termed the ‘probe effect’ (Li and Wong, 2001a, b).

We propose a new non-parametric summarization technique,
the Distribution Free Weighted method (DFW). DFW is non-
parametric in the sense that no distributional assumptions are made
on the probe-level intensities. In its current implementation, no
background correction is performed, and quantile normalization,
as in RMA and FARMS, is employed for normalization purposes.
Also like RMA and FARMS, only the PM probes are used. We
compare our new method with MAS 5.0 and its later improved
version Probe Logarithmic Intensity Error (PLIER, Affymetrix,
2005), MBEI, RMA, RMA-noBG, Gene Chip RMA (GCRMA,
Wu et al., 2004) and FARMS. We use two sets of Affymetrix
Spike-in data (available at: http://www.affymetrix.com) along
with the ‘GoldenSpike’ dataset (Choe et al., 2005), for comparison.
The results show that DFW outperforms other methods when both
of sensitivity and specificity are considered.

DFW and the method comparisons are implemented in R (Thaka
and Gentleman, 1996) and Bioconductor (Gentleman et al., 2004).
Both programs are available at http://www.bioconductor.org.

2 METHODS

Since different probes within the same probe set hybridize with different
strengths to the same target, a preprocessing method should take these probe
effect differences into account. However, for most preprocessing methods,
the probe effect for each probe is assumed to be a constant across the probe
set (Li and Wong, 2001a, b). It is well accepted that there is a linear rela-
tionship between the specific hybridization intensity and the concentration
of the target mRNA (Lockhart et al., 1996). Indeed, the spike-in datasets
are based on this linear relationship assumption for log intensity and log
concentration (Lockhart et al., 1996). Under this assumption, the relative
specific hybridization intensities under different conditions from all PM
probes within a probe set should also be consistent. For example, if probe
A has stronger hybridization characteristics than probe B, then probe A
intensity signal should always be stronger than the probe B signal by some
consistent value.

However, we can only estimate the fold differences between experiments
based on the observed intensities that contain noise. There are several
reasons why the estimated intensity values, even for probe-pairs that are

part of the same probe set, are disparate from one another. First, no matter
what methods are used, it is difficult to remove all the background noise. The
background noise has a large effect on the estimated intensity values, espe-
cially when the intensities are low. Second, the amount of non-specific- and
cross-hybridization is different from probe to probe. Currently, there are
no reasonable methods to remove effects due to non-specific- and cross-
hybridization from the observed intensities. Third, some PM probes are not
really PM probes for the gene (probe set) they have been assigned to,
although they were thought to be so when the chip was designed, due to
our evolving knowledge of genome sequence and transcript structures
(Dai et al., 2005; Harbig et al., 2005). Therefore, each PM probe should
not be treated equally during summarization.

A good summarization method should not only utilize the information
from multiple chips, as RMA, MBEI and FARMS do, but also consider
the different qualities of PM probes within a probe set. The new method
described here, DFW, is a multi-chip method and takes advantage of
information among arrays. The ‘hybridization quality’ of each PM probe
within a probe set is estimated based on the intensity value (log base 2)
variability for that probe across all arrays. The final estimated probe set
intensities are weighted averages that give larger weights to high-quality PM
probes. This approach is based on the postulate that relative intensity values
of probes that suffer from non-specific- and cross-hybridization within a
probe set will demonstrate higher variability among arrays derived from
independent biological samples. The following paragraphs give more detail
on the method, and an example of DFW performed on a much-simplified
dataset is given in the Supplemental material.

The observed intensities are first logarithm-transformed for each PM
probe across arrays. The range (maximum-minimum) of the log intensity
value for each PM probe across arrays and the median range value for this
probe are calculated. The median-centered range of the log intensity values
for PM probe i is denoted by x;. We denote the maximum absolute value
of x;s as Max. We use the Tukey weight function:

Wi = (1—(ﬁ)z>2. (1)

And the final weight for probe i is:

_w(w)
J
ZW(X_/)

Where J is the number of PMs within that probe set. If all the ranges are the
same, then each PM probe has the same weight. By using this weighting
procedure, small weights are given to those PM probes with poor qualities
due to unusually high or low variability across arrays. Here, we assess the
quality of PM probes across all arrays, as this avoids a common situation
where a PM probe may perform well for some arrays or conditions (for
example, when the concentrations are high), but has poor behavior for
other arrays or conditions.

The summarized expression values (log base 2) of a probe set across
arrays are then calculated from the weighted probe intensity values. First,
for each probe set, the weighted intensity value (a vector with length
corresponding to the number of arrays) is calculated based on the log base
2 PM intensity and the weight from each probe within the probe set. The
weighted intensity values are linearly transformed to be between 0 and 1 to
give the transformed intensity values. This transformation is necessary in
order to standardize the comparison between DEGs and non-DEGs, since
we assume that the variability between these two groups is different. More
specifically, the differentially expressed genes (DEGs) have larger ranges
of intensity values (log base 2) than that of non-DEGs, and this range is
much larger than would be expected from the probe effects. Therefore, large
variability for a probe across arrays that is still present after the weighting
procedure has been completed is evidence of differential expression.

A combination of two measures is used to aide in the detection of DEGs.
The weighted range (WR), the range of the weighted intensity values for

Wi

2)
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Table 1. Average AUC (percent) for Datasets A and B using different sum-
marization methods

Dataset DFW FAR GCR RMA RMA- MASS5 MBEI PLIE R

MS MA noBG
A 100 91 69 60 65 05 26 3
B 100 95 57 65 63 06 40 20

each probe, is calculated as an absolute measure of a probe’s variability
across experiments. A weighted standard deviation (WSD) is calculated in
the same way as the weighted intensity values, where x; in (1) is replaced by
the median-centered standard deviation across arrays. The WSD captures
average variability around the mean weighted intensity for each PM probe.
The WSD is useful in mitigating the effect of extreme probe intensity
values on the WR, thus assuring that large values of their combination
point to DEGs, rather than genes containing a few poorly performing probes.
Therefore, the WSD of probe intensities across arrays provides additional
information.
The final expression value G; for gene i across arrays is given by

ExpValue = min + ¢(TIV)(WR)"(WSD)" (3)

Here, m and n are positive numbers, min is the minimum of the weighted
intensity values before the linear transformation, and c is a scale parameter.
The parameters m and n are positive, and they are intended to accentuate
large differences in the WR and WSD in order to facilitate the selection of
DEGs. Default values are set to be m = 3, n = 1. In practice, m and n larger
than 3 results in log expression values that are larger than can be reasonably
expected given the detection limits of most scanners. For example, typical
values of WR range from 7 to 11 (on a log base 2 scale), while values for
WSD range from 5 to 8. Therefore, ¢ is applied globally to make the
expression values more manageable. In the analysis of Datasets A and B
that follow (explained in the next section), m = 3, n = 1 and ¢ = 0.01. For
Dataset C, m = 3, n = 1 and ¢ = 1. More detail on the choice of m and n
is given in the discussion section.

3 RESULTS
3.1 Datasets

We compared our new summarization method with others by using
three publicly available spike-in datasets (Dataset A—C). Dataset
A is the Affymetrix Latin Square spike-in experiment done on the
HG-U95Av2 array. For details on this experiment, see the Affyme-
trix website (http://www.affymetrix.com). Our comparisons used
16 probe sets recognizing spike-in gene transcripts instead of the
original 14, following the recommendations of Cope et al. (2004).
Dataset B is the Affymetrix Latin Square spike-in experiment per-
formed on the HG-U133A array platform. It was originally designed
such that 42 probe sets recognize spike-in transcripts (14 spike-in
groups with each group containing three probe sets). McGee and
Chen (2006) recently found that there are 22 additional probe sets
that also recognize spike-in transcripts in Dataset B. Therefore,
there are actually 64 spike-in probe sets for Dataset B. Comparisons
were done with both the original 42 spike-ins, via the Affycomp II
competition, and the 64 new spike-ins.

Dataset C consists of six DrosGenomel chips (two conditions
with three replicates for each) with 3860 probe sets that recognize
spike-in transcripts (Choe et al., 2005). Among the 3860 probe sets,
1309 recognize transcripts with known fold differences between
the two experimental conditions, from 1.2 to 4, and the remaining

2551 probe sets recognizing transcripts included at the same
concentration under both conditions.

3.1 Results

The ‘Affycomp II’ competition (Cope et al., 2004; Irizarry et al.,
2006, http://affycomp.biostat.jhsph.edu) allows comparisons among
54 and 55 (at the time this paper was prepared) public microarray
preprocessing methods based on datasets A and B, respectively.
The competition uses many comparison statistics, but only the
various areas under the Receiver Operating Characteristic (ROC)
curve (AUC) statistics are not scale-dependent (Hochreiter ez al.,
2006). Furthermore, the AUC allows comparison based on sensi-
tivity and specificity simultaneously, which are the most important
characteristics of a preprocessing method from the standpoint of a
researcher. As detailed below, DFW outperforms all other methods
with regard to this simultaneous measure of sensitivity and speci-
ficity. In addition, DFW achieves a perfect score on three other
measures as follows: median SD, null log FC IQR and null log
FF 99%, for both datasets A and B.

Weighted AUC values for DFW, RMA, MAS 5.0, MBEI, FARMS
and GCRMA, for both Datasets A and B, are given in Table 1. This
comparison uses 42 spike-ins for Dataset B. In Tables 4 and 5, we
show the results using all 64 spike-ins for Dataset B (McGee and
Chen, 20006).

For the various scores related to regression of expression (or
concentration) on nominal concentration values, the results given
for DFW in the Affycomp II competition are ranked within the
bottom third of the list for both Datasets A and B. RMA-noBG
has similar rankings on these measures, but its AUC values are not
as large as those of DFW.

For the Latin Square datasets, we also compared pairs of experi-
ments that were separated by the same number of permutations
(where d = number of permutations), of the Latin Square. Essen-
tially, for d = 1, most of the spike-in transcripts differ in concen-
tration by 2-fold (log2 = 1); for d = 2, fold difference would be
4 for most of the spike-ins. [See McGee and Chen (2006) for a more
complete explanation of d.] Usually, it is harder to detect the true
positives for smaller d than for larger d.

The AUC was calculated for a cutoff of various numbers of false
positives (e.g. the number of false positives is 5 for Table 2). The
values are then standardized so that the area is between O and
100%. For Dataset C no cutoffs were set since the fold changes
for this dataset are usually very small and many spike-ins cannot be
detected as DEGs for a small number of false positives. Instead, we
use the number of false positives necessary to obtain all of the true
positives to calculate the AUC. The values are then normalized so
that the numbers are comparable among methods. Figure 1 is the
ROC curve plot of Dataset A for d = 1 when the number of false
positives is 5. The DFW method detects all of the true positives
without including any false positives. For all other methods tested,
false positive detection starts to occur well before all true positives
are detected. For d = 2, 3, ..., 7, similar plots for ROC curves were
obtained. In other words, in all situations tested with this dataset,
DFW outperformed the other methods using this important perfor-
mance metric.

Table 2 shows the effects of degree of separation in the Latin
Square design on the performance of the various summarization
methods as measured by the AUC. For most of the methods, per-
formance improves as the degree of separation increases, showing
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Table 2. AUC (percent) comparison for Dataset A (#FP = 5)

d DFW FAR GCR RMA RMA- MASS5 MBEI PLIER
MS MA noBG
1 1000 692 566 453 587 06.3 063 046
2 1000 849 793 764 784 12.6 206 079
3 100.0 865 865 882 864 18.8 448  06.6
4 1000 933 902 927 933 42.9 59.8  06.7
5 100.0 936 982 992 975 74.6 70.8 040
6 100.0 937 993 99.6 998 84.8 76.3  00.0
7 1000 937 996 99.8  99.7 86.2 80.1 00.0
ROC
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Fig. 1. ROC plots based on Dataset A for DFW and popular preprocessing
methods. ROC analysis was performed for d = 1 where the maximum
number of false positives is 5. DFW detects all the true positives without
any false positives.

that as the average fold difference in expression increases, most
methods are more easily able to distinguish between real differences
in target amounts given the experimental variability. In contrast,
DFW is effective at all degrees of separation, even when the
difference in target amounts is relatively small (e.g. 2-fold).

AUC analysis is dependent on the range of false positive values
considered. Table 3 shows the effect of increasing the extent of false
positive values on the AUC results using the various summarization
methods. Even at relatively high false negative extents, DFW is
found to significantly outperform the other methods using the AUC
metric.

Figure 2 shows the ROC curve plot of Dataset B for d = 1 when
the number of false positives is 10. Once again, the DFW method
can obtain all of the true positives with very few false positive
(<2 on average) and is superior to the other methods tested. As
with Dataset A, similar findings were observed ford =2, 3,...,7
(Table 4).

Table 5 shows the effect of increasing the extent of false positive
values on the AUC results using the various summarization methods
for Dataset B. Again, even at relatively high false negative extents,

Table 3. AUC (percent) from Dataset A for given numbers of false positives
whend =1

#FP DFW FAR GCR RMA RMA- MAS 50 MBEI PLIER

MS MA noBG
2 100.0 626 362 320 53.0 6.3 6.3 0.0
5 100.0 69.2 56.6 453 58.7 6.3 6.3 4.6
10 100.0 754 658 529 63.8 6.3 10.3 54
20 100.0 819 729 60.6 66.3 6.3 25.3 5.8
40 100.0 872 78.8 64.6 67.5 6.3 41.6 6.0

DFW is found to significantly outperform the other methods using
the AUC metric.

In order to determine if these findings were peculiar to these
spike-in datasets with small numbers of true positives, a similar
study was performed on the GoldenSpike dataset (Dataset C), in
which 1309 probe sets recognize spike-in transcripts with known
fold differences (from 1.2 to 4) between the two experimental
conditions.

It is important to mention that the use of the Choe ‘GoldenSpike’
dataset for method comparisons is somewhat controversial. Two
recent papers have criticized this dataset (Dabney and Storey, 2006;
Irizarry, et al., 2006). The former is a reanalysis of the Choe dataset,
explaining that the original analysis in the Choe et al. paper was not
appropriate. In particular, the original analysis did not take into
account the fact that the replicated arrays were technical replicates
rather than biological replicates, and so the analysis presented here
for this dataset will not have included the effects of biological
variability in the results.

Irizarry et al. (2006) show evidence for an experimental artifact
pertaining to the different behavior of features spiked-in to be at
a 1:1 ratio between the control and the spike-in experiment. We
conjecture that this artifact may be present due to the necessity of
adding additional cDNA (mRNA) material as the concentrations
were increased. If Choe ef al. had tried to keep the amount of cDNA
constant, it is likely that other artifacts would have been produced in
the data. Essentially, in an experiment such as this, it would be
very difficult to get around all potential artifacts. Also, we have no
way of knowing whether something similar to this might occur
in real data. We have included an analysis using the Choe dataset
mainly because its large number of differentially expressed tran-
scripts allows for better estimation of false and true positive
rates. Furthermore, inclusion of this dataset gives a comparison on
data that is quite different in design from the Affymetrix spike-in
datasets.

For comparison using Dataset C, we added another method that
was advised by Choe et al., as a result of their experiments with
various combinations of methods for background correction, nor-
malization and summarization. We call this the ‘Choe Preferred’
(CP) method. This method first corrects the background using the
local procedure of MAS 5.0. Normalization is accomplished using
quantile normalization, followed by median polish summarization.
There is a second normalization after summarization, for which the
LOESS procedure is used.

Table 6 shows the AUC calculations using the various summa-
rization methods on Dataset C. The first row is the values of fold
difference in transcript levels (spike-in group versus control group)
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Fig. 2. ROC plots based on Dataset B (with 64 spike-ins) when d = 1 and

number of false positives is 10. DFW detects all the true positives with ~2
false positives.

Table 4. AUC (percent) comparison for Dataset B (#FP = 10)

d DFW FAR GCR RMA RMA- MASS50 MBEI PLIER
MS MA noBG
1 98.6 84.1 514 550 60.7 4.7 15.5 7.0
2 987 864 589 674 63.5 10.6 36.3 19.7
3 993 932 658 80.6 81.5 27.6 48.4 43.4
4 997 947 783 884 91.5 51.4 64.9 65.8
5 99.9 97.0 934 9438 96.1 76.0 76.2 82.2
6 1000 978 955 96.5 96.9 98.5 81.0 88.7
7 1000 982 976 982 98.3 90.7 83.6 91.2

and the second row gives the number of spike-in probe sets that have
the corresponding fold differences given in row 1. Some of the
spike-ins do not have the exact fold changes listed. For example,
there are 167 out of 172 spike-ins that have exact fold change of
1.2 but 5 of the 172 have fold differences >1 but <1.2. Choe et al.
(2005) explain this phenomenon in their paper. The values in the
parenthesis of row 2 are the numbers of spike-ins that have the
exact fold differences indicated in column 1. The first two largest
values of AUC for each fold difference category of spike-ins are
highlighted in bold in Table 6. DFW and GCRMA almost always
give the highest AUC values. Usually GCRMA has slightly larger
values of the AUC than does DFW.

Dataset C was created to mimic real data as closely as possible;
therefore, it is noisier than the Latin Square datasets, and likely
requires more background correction and normalization. In an
attempt to improve the performance of DFW on the Choe dataset,
we used the exponential-normal background correction (RMA)
and zonal correction (MAS 5.0) in concert with DFW. We further
investigated the effect of these background correction methods in

Table 5. AUC (percent) from Dataset B for given numbers of false positives
whend =1

#FP DFW FAR GC- RMA RMA- MAS 5.0 MBEI PLIER
MS RMA noBG
5 971 749 453 493 555 4.7 7.9 6.0
10 98.6 84.1 514 550 607 4.7 15.5 7.0
20 993 90.1 554 60.0 64.0 4.7 28.6 8.5
50 99.7 950 589 657 675 4.7 45.1 154
100 999 97.6 613 702 69.8 5.7 53.6 24.8

combination with various normalization methods, specifically,
constant normalization, LOESS normalization and invariant set
normalization. The use of the two background methods above
improved the performance of DFW, but not above the level of
GCRMA. Combinations of various background correction and
normalization algorithms also did not improve the performance
of DFW above the level of GCRMA. However, the use of LOESS
normalization, with no background correction and DFW summa-
rization, had a better performance than GCRMA (AUC 0.96 and
0.95, respectively, for spike-ins with fold change >2.0).

In our analysis, CP performs better than PLIER and sometimes
MAS 5.0, but much worse than the others. The discrepancy between
its performance in the Choe paper versus ours can be explained by
the way in which DEGs were determined in Choe’s study. The Choe
et al. paper used a modified #-statistic (Welcome to Cyber-T http://
visitor.ics.uci.edu/genex/cybert) to identify DEGs. They based their
evaluation of the methods on the number of genes in the top 1000
significant genes that were true spike-ins. For this paper, we used a
fold difference based method, as is typically done for Datasets A
and B. Fold difference makes more sense for Choe data, since there
are a small number of replicates (three for each condition). Hence,
the estimated standard deviations, necessary for Cyber T, are not
very reliable.

Figures 3 and 4 show the ROC curves for all the methods for
Dataset C. In Figure 3, we show curves for all spike-ins with nomi-
nal fold change levels equal to 1.2. Figure 4 shows the comparisons
for all spike-ins considered simultaneously.

The spike-in datasets are derived from highly specialized experi-
ments, and it is not clear that these results, as good as they may be,
will hold for real data (Allison, 2006). To remedy this situation, we
compared the performance of DFW to RMA, MAS 5.0, PLIER,
FARMS, and MBEI on simulated data. The model used for DEGs
in the simulations is given by

PM = pe + signal + noise + fc

where pe = probe effect and fc = fold change. Non-DEGs were
simulated using the same model, excluding the fold change. We
assume that there are 11 probes per probe set and that there are three
‘bad’ probes within each probe set. This assumption is made for
both DEGs and non-DEGs. Details of the parameters used and the
results, including ROC curves, are given in the Supplemental mate-
rial. Again DFW was found to outperform all methods on these
simulations, which were designed to simulate the effects of non-
specific and cross-hybridization on PM signals. We have now begun
a comprehensive analysis of DFW on real microarray data related
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Table 6. AUC (percent) comparison for Dataset C

FC 12 15 1.7 2.0 2.5 3.0 3.5 4.0 All
Spike-ins 172 (167) 182 (169) 181 (179) 146 (139) 192 (182) 97 (93) 184 (184) 177 (177) 1331
DFW 89.7 65.8 61.6 82.7 90.1 96.2 94.8 98.6 84.1
FARMS 87.8 66.0 63.6 783 87.8 94.8 94.0 975 82.9
GCRMA 86.0 74.3 78.3 88.4 91.9 96.1 96.0 98.5 88.1
RMA 86.3 48.8 45.0 745 84.7 928 93.9 97.7 76.8
RMA-noBG 88.8 59.6 56.8 80.0 87.9 94.9 94.4 98.1 81.6
MASS5.0 532 30.6 15.2 21.1 30.1 419 58.9 62.5 39.0
MBEI 81.5 40.6 45.9 76.0 87.2 94.5 94.4 98.9 76.0
PLIER 12.5 9.6 31.1 51.8 60.9 72.0 83.8 86.6 49.7
CP 37.1 232 427 62.4 70.5 78.0 84.4 87.2 59.5
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Fig. 3. ROC curves based on Dataset C and when the FC is 1.2. DFW has
the largest AUC values.

to B lymphocyte transformation, differentiation and function using
GeneOntology ™ annotation co-clustering and experimental valida-
tion approaches (Lee, 2006).

Finally, the computational complexity for each method was
estimated by measuring the CPU time, as given on a PowerMac
G5 running R Cocoa GUI (Iacus and Urbanek, 2005) with R version
2.2.0 (Table 7). The computational time for DFW is much less than
the other methods, such as RMA, MBEI, FARMS and PLIER. This
is because DFW is not an iterative method. MBEI and FARMS, for
example, require iterative algorithms to estimate the necessary
model parameters. In addition, it should be noted that MBEI
does not always converge, even for the Latin Square datasets,
and is particularly unsuitable for the GoldenSpike dataset due to
the small number of arrays.

4 DISCUSSION

DFW outperforms all methods we examined by a large margin, in
terms of sensitivity and specificity, on the Affymetrix Latin Square

Fig. 4. ROC curves based on Dataset C when all the spike-ins are considered.
DFW has the second largest AUC values.

datasets. GCRMA performs slightly better than DFW on Dataset C,
in spite of the use of background correction and normalization
methods in combination with DFW. The difference in performance
can be explained by the fact that the assumptions for the various
background correction and normalization methods are violated on
the Choe dataset. The exponential-normal and zonal background
correction methods both assume that the background intensities
are not probe dependent. Due to the differing binding affinities
for different probes, this is likely not the case. Furthermore, current
normalization methods (including quantile normalization) make the
assumption that genes are symmetrically expressed (equally likely
to be up or down regulated), an assumption that is clearly violated
by the Choe dataset, since all of the spike-in transcripts are designed
to be upregulated. Another assumption that is typically implicit
in most normalization methods is that the percentage of DEGs is
‘small’. To our knowledge, no one has examined the question of
‘How small is small?” nor do there exist normalization methods
for situations where a large percentage of genes is expected to be
differentially expressed. GCRMA does little in the way of normal-
ization, and its background correction method attempts to model
the probe-specific effects. Therefore, we suspect that the better
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Table 7. CPU time (in seconds) for various methods on the three spike-in
datasets (the best times for each method are marked with asterisks)

Method RMA RMA- GCRMA MAS PLIER MEBI FARMS DFW

noBG 5.0

Dataset A 342 299 214 953 321 869 132 112*
Dataset B 388 353 210 1064 239 833 1915 144"
Dataset C 150 147 78 130 17" 269 280 68

Table 8. AUC values (percent) calculated from method DFW with different
m and n

FC m3nl mlnl mln2 min3 m2nl m2n2 m3n3 mSn5 m8n8

12 89.7 8.3 893 8.3 8.6 8.6 8.7 8.8 898
1.5 658 619 625 629 643 647 663 676 678
1.7 616 596 608 615 610 619 627 633 626
20 827 816 825 830 824 829 833 836 837
25 90.1 898 904 90.7 903 905 90.6 90.7 90.7
30 962 955 959 962 960 963 965 96.6 96.7
35 948 947 949 950 948 949 949 949 948
4.0 986 985 986 987 986 986 987 98.7 98.7
All 84.1 829 834 837 834 840 844 848 847

sensitivity and specificity of GCRMA compared to DFW is due to
the unsuitability of current normalization and background correc-
tion methods for these data.

The DFW method involves three parameters that must be chosen,
namely m, n and c¢. As mentioned in Section 2, m and n determine
how the extra information provided by the range and SD is used. In
our experience, larger values of m and n give better results in terms
of AUC. However, if m and n are too large, it will be difficult to
scale the final expression values to be comparable with the original
ones. The parameter c¢ is used to adjust the expression values to a
more reasonable scale. In our analyses, the value of ¢ did not effect
the AUC calculations.

Table 8 gives the AUC values for different m and n based on
Dataset C. Good results were achieved when m and n were between
one and three. Similar conclusions were obtained based on Datasets
A and B (see Supplementary tables). Therefore, we would expect
that m = 1 and n = 3 would also give good sensitivity and specificity
for real data.

5 CONCLUSION

We have proposed a new non-parametric summarization technique,
DFW summarization, which uses variability estimates to identify
and down-weight probes that may be especially affected by
non-specific and cross-hybridization. This method performed
well on three different spike-in datasets when sensitivity and spe-
cificity are considered simultaneously in ROC/AUC analysis. In
addition, DFW requires less computational time compared with
other methods. These data suggest that consideration of probe
effects related to non-specific and cross-hybridization during the

summarization step can significantly improve the results of Affy-
metrix gene expression microarray preprocessing.
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